Post-diving measurement of urine parameters of oxidative stress using quadrupole time-of-flight mass spectrometry (QToF-MS)

Tobias Demetrowitsch1, Wataru Kähler2, Andreas Koch2, Karin Schwarz1
1Institute for Human Nutrition and Food Science, Dept. of Food Technology, University of Kiel
2Institute for Experimental Medicine, Dept. of Maritime Physiology, University of Kiel

Introduction

The aim of this study was to evaluate a feasibility-study for measuring oxidative stress markers from different radical pathways in human urine with only one preparation step. For the detection and quantification a high-resolution quadrupole- time of flight mass spectrometry system (QToF-MS), which was linked to an UHPLC-system was used. Three different radical pathways were selected: the lipid metabolism (8-iso-prostaglandin-F_{2α}); the DNA damaging (8-oxo-2-deoxyguanosine); and the observation of the hydroxyl radicals (dihydroxylated benzoates, DHBs). For this feasibility-study, we used human urine samples from a cohort of six German Navy-Divers, who had performed a total of 21 dives with a closed-circuit oxygen-rebreather.

Experimental:

- Urine samples from six trained divers (n=6, all males)
- Age was between 20-24 years (mean 23)
- A closed-circuit oxygen rebreather were used (pO2 between 1.2 - 1.6 bar)
- The duration of the dives varied between 60-90 min
- Samples: before, after and 6h after the dive
- Additional: QC samples for validation

Sample Analysis:

UHPLC Method:
- Sphinx column (1.0*100 mm, 1.7 µm particles)
- Eluent A: water + 0.1 % FA
- B: ACN + 0.1 % FA
- Column temperature: 20 °C
- Gradient with a total runtime of 15 minutes

Results:

- Median for the samples with n=63, shown in µmol/L/ mg creatinine
- Used and validated detection parameter for the quantification
 - Signal-to-noise ratio (S/N) was for all marker compounds greater than 3
 - Minimum intensity was 75 counts (threshold)
 - At least seven spectra were necessary for the peak confirmation

Discussion:

- The highest levels of the oxidative stress markers were observed directly after the dives
- This seems to be attributable to a combination of increased pO2 and the physical work, which caused a generation of ROS (due to aerobic phosphorylation in the respiratory chain)
- The formation of the radicals depends not only to the higher oxygen uptake through physical activity but also on the higher pO2 [1-4].
- the DHBs value, are comparable to the earlier data published by Gronow et al. (2005), and Kähler et al. (2013) [5-6].
- the levels of the oxidative makers after 6h resting compared to the levels prior to diving (t₀)
- This trend suggests that 6h resting time provides a complete regeneration of the divers

Conclusion:

In this study,
- the feasibility for the parallel detection of different oxidative stress markers was evaluated
- the identification was possible
- also the quantification of each marker compound. Moreover:
 - a trend could be observed between the sample before and after the dive
 - as well as the samples after the dive and after 6 hours resting
 - after the dive, the values were highest
- before and after 6 h, the values were approximately similar.

References: